The 7th International Conference on Development and Learning and Epigenetic Robotics, Instituto Superior Tecnico, Lisbon, Portugal, 20th Sep, 2017

Predictive Coding-based Deep Dynamic Neural Network for Visuomotor Learning

Jungsik Hwang^{1,2}, Jinhyung Kim¹, Ahmadreza Ahmadi^{1,2}, Minkyu Choi² and Jun Tani²

¹Korea Advanced Institute of Science and Technology ²Okinawa Institute of Science and Technology

OVERVIEW

PROPOSED MODEL

EXPERIMENT SETTING

MENTAL SIMULATION

PREDICTION ERROR MINIMIZATION CONCLUSION

Overview

"Deep Dynamic Neural Network Model" which can

- 1. Build a Predictive Internal Model of the world from sensorimotor experience
 - Predicting dynamic visuo-proprioceptive patterns
- 2. Minimize Prediction Error through updating internal states of the neurons
 - Inferring intention of the perceived patterns
 - Recalling visuo-proprioceptive representations

OVERVIEW

PROPOSED MODEL

EXPERIMENT SETTING

MENTAL SIMULATION

PREDICTION ERROR MINIMIZATION CONCLUSION

Proposed Model

P-VMDNN

Predictive

Visuo-Motor

Deep

Dynamic

Neural Network

Predictive Visuo-Motor Deep Dynamic Neural Network

Visual Pathway

- Predicts pixel-level dynamic visual images
 - Implemented by P MSTRNN (Predictive-Multiple Spatio-Temporal Scales RNN)
 - 4 Layers
 - Vision Input/Output
 - Vision Fast
 - Vision Middle
 - Vision Slow

Predictive Visuo-Motor Deep Dynamic Neural Network

Proprioceptive Pathway

- Predicts robot's joint position values
 - Implemented by MTRNN (Multiple Timescales RNN)
 - 4 Layers
 - Proprioception Input/Output
 - Proprioception Fast
 - Proprioception Middle
 - Proprioception Slow

Predictive Visuo-Motor Deep Dynamic Neural Network

Lateral Connection

- Between the highest level of each pathway
- Coupling of Vision & Proprioception
- Trained in a holistic manner
 - End-to-End Training

Predictive Visuo-Motor Deep Dynamic Neural Network

Spatio-Temporal Hierarchy

Larger Time Constants, Longer Distance Connectivity

Smaller Time Constants, Shorter Distance Connectivity

"Emergence of Functional Hierarchy"

Predictive Visuo-Motor Deep Dynamic Neural Network

Key Features

- Mental Simulation
- Prediction Error Minimization
- Processing of Spatio-Temporal Patterns^{*}
- Coupling of Vision & Proprioception * (*Hwang et al., ICDL-EPIROB 2016)

OVERVIEW

PROPOSED MODEL

EXPERIMENT SETTING

MENTAL SIMULATION

PREDICTION ERROR MINIMIZATION CONCLUSION

Experiment Setting

• Task: Imitating another robot's gestures

- Robotic Platform: iCub Simulator
- Visuomotor Coordination, Observing the movements, Understanding the intention, Predicting the next movements

Demonstrator

. Imitator

Experiment Setting

- Dataset: Acquired From "tutoring" (kinesthetic teaching)
 - 16 hand-waving gestures:
 - Visual Images (64 x 48 grayscale)
 - Joint Position Values (left & right elbows)
- Training: 40,000 epochs, BPTT, ADAM on Tensorflow
- After training:
 - Connection weights & biases: same for all training data
 - Initial states: different for each training data
- Network Settings:

Visual Pathway	Layer	Time Constants	Feature Maps		Top-Down Kernel		Bottom-Up Kernel		Recurrent Kernel		Lateral Kernel	
			Number	Size	Size	Stride	Size	Stride	Size	Stride	Size	Stride
	V _F	2	4	60×44	4×4	2,2	5×5	1,1	2×2	1,1	2 . =0	1950
	V _M	4	8	29×21	5×5	2,2	4×4	2,2	2×2	1,1	-	-
	Vs	8	12	13×9	-	-	5×5	2,2	2×2	1,1	13×9	1,1
Proprio- ceptive pathway	Layer	Time	Number		Top-Down		Bottom-Up		Recurrent		Lateral	
		Constants	of Neurons		Weights		Weights		Weights		Kernel	
	P_{F}	2	30		30×20		30×20		30×30		-	0.50
	P _M	4	20		20×10		20×30		20×20		1	1.2
	P_S	8	10				10×20		10×20		13×9	1,1

• Exp 1. Mental Simulation

- Imagining possible outcome of action
- Without external inputs, but with given intention

• Exp 2. Prediction Error Minimization

- Exp 2-1. Minimizing Visual Prediction Error
- Exp 2-2. Minimizing Proprioceptive Prediction Error

OVERVIEW

PROPOSED MODEL

EXPERIMENT SETTING

MENTAL SIMULATION

PREDICTION ERROR MINIMIZATION CONCLUSION

Mental Simulation

- Ability to imagine probable result of our actions
- Important in social interaction
- Need to provide "<u>a goal</u>" what to simulate

Implementation in Our Model

- Proactively generating visuo-proprioceptive patterns
 - Without external inputs, but with given intention states
- Anticipating
 - its own action (i.e. Proprioceptive Prediction joint position values)
 - & others' action (i.e. Visual Prediction gray scale images)

- 1. Set the "Intention"
 - Specified as the initial states
- 2. Generate Output
 - Visual & Proprioceptive predictions
- 3. Feed Prediction Output into Input
 - "Closed-loop Generation"
- 4. Iterate (2) (3)

- Set the "Intention" 1.
 - Specified as the initial states
- Generate Output 2.
 - Visual & Proprioceptive predictions ullet
- Feed Prediction Output into Input 3.
 - "Closed-loop Generation"
- Iterate (2) (3) 4.

- 1. Set the "Intention"
 - Specified as the initial states
- 2. Generate Output
 - Visual & Proprioceptive predictions
- 3. Feed Prediction Output into Input
 - "Closed-loop Generation"
- 4. Iterate (2) (3)

- 1. Set the "Intention"
 - Specified as the initial states
- 2. Generate Output
 - Visual & Proprioceptive predictions
- 3. Feed Prediction Output into Input
 - "Closed-loop Generation"
- 4. Iterate (2) (3)
- Without external input from environment
- Only with given intention

- 1. Set the "Intention"
 - Specified as the initial states
- 2. Generate Output
 - Visual & Proprioceptive predictions
- 3. Feed Prediction Output into Input
 - "Closed-loop Generation"
- 4. Iterate (2) (3)
- Without external input from environment
- Only with given intention

- 1. Set the "Intention"
 - Specified as the initial states
- 2. Generate Output
 - Visual & Proprioceptive predictions
- 3. Feed Prediction Output into Input
 - "Closed-loop Generation"
- 4. Iterate (2) (3)
- Without external input from environment
- Only with given intention

- 1. Set the "Intention"
 - Specified as the initial states
- 2. Generate Output
 - Visual & Proprioceptive predictions
- 3. Feed Prediction Output into Input
 - "Closed-loop Generation"
- 4. Iterate (2) (3)
- Without external input from environment
- Only with given intention

- 1. Set the "Intention"
 - Specified as the initial states
- 2. Generate Output
 - Visual & Proprioceptive predictions
- 3. Feed Prediction Output into Input
 - "Closed-loop Generation"
- 4. Iterate (2) (3)
- Without external input from environment
- Only with given intention

- 1. Set the "Intention"
 - Specified as the initial states
- 2. Generate Output
 - Visual & Proprioceptive predictions
- 3. Feed Prediction Output into Input
 - "Closed-loop Generation"
- 4. Iterate (2) (3)
- Without external input from environment
- Only with given intention

- 1. Set the "Intention"
 - Specified as the initial states
- 2. Generate Output
 - Visual & Proprioceptive predictions
- 3. Feed Prediction Output into Input
 - "Closed-loop Generation"
- 4. Iterate (2) (3)
- Without external input from environment
- Only with given intention

Result Initial States obtained from Training

- Different initial states for each training data
- Self-organized higher-level initial states
 - Reflecting the characteristics of the gestures

Result Mental Simulation of Action

- With given '<u>intention</u>', the model generated visuo-proprioceptive patterns without external inputs
 - Coherent visual and proprioceptive predictions
 - → Vision and Proprioception were tightly coupled

Closed-loop generation of patterns

OVERVIEW

PROPOSED MODEL

EXPERIMENT SETTING

MENTAL SIMULATION

PREDICTION ERROR MINIMIZATION CONCLUSION

Prediction Error Minimization

- Core of "Predictive Coding"
- Account for MNS (Mirror Neuron System)
 - Recognizing intention from observation by <u>minimizing prediction error</u> at the levels of a cortical hierarchy (Kilner et al., 2007)

Implementation in Our Model

Recognizing intention of the perceived patterns by <u>minimizing prediction error</u>
 <HOW>→ <u>Updating internal states of neurons at each level of the hierarchy</u>

"Error Regression Scheme"

• Error Regression Scheme (ERS)

- Implementation of PE Minimization (Tani, 2016)

At each time step

- 1. Generate Visuo-Prop. Predictions
 - Top-Down Process
- 2. Compute Prediction Error
 - Difference b/w Predicted & Observed Patterns
- 3. Backpropagate Prediction Error & Update Intention State
 - Bottom-Up Process
- 4. Iterates a Few Times

Environment

• Error Regression Scheme (ERS)

- Implementation of PE Minimization (Tani, 2016)

At each time step

- 1. Generate Visuo-Prop. Predictions
 - Top-Down Process
- 2. Compute Prediction Error
 - Difference b/w Predicted & Observed Patterns
- 3. Backpropagate Prediction Error & Update Intention State
 - Bottom-Up Process
- 4. Iterates a Few Times

Environment

• Error Regression Scheme (ERS)

- Implementation of PE Minimization (Tani, 2016)

- 1. Generate Visuo-Prop. Predictions
 - Top-Down Process
- 2. Compute Prediction Error
 - Difference b/w Predicted & Observed Patterns
- 3. Backpropagate Prediction Error & Update Intention State
 - Bottom-Up Process
- 4. Iterates a Few Times

• Error Regression Scheme (ERS)

- Implementation of PE Minimization (Tani, 2016)

- 1. Generate Visuo-Prop. Predictions
 - Top-Down Process
- 2. Compute Prediction Error
 - Difference b/w Predicted & Observed Patterns
- 3. Backpropagate Prediction Error & Update Intention State
 - Bottom-Up Process
- 4. Iterates a Few Times

• Error Regression Scheme (ERS)

- Implementation of PE Minimization (Tani, 2016)

- 1. Generate Visuo-Prop. Predictions
 - Top-Down Process
- 2. Compute Prediction Error
 - Difference b/w Predicted & Observed Patterns
- 3. Backpropagate Prediction Error & Update Intention State
 - Bottom-Up Process
- 4. Iterates a Few Times

• Error Regression Scheme (ERS)

- Implementation of PE Minimization (Tani, 2016)

- 1. Generate Visuo-Prop. Predictions
 - Top-Down Process
- 2. Compute Prediction Error
 - Difference b/w Predicted & Observed Patterns
- 3. Backpropagate Prediction Error & Update Intention State
 - Bottom-Up Process
- 4. Iterates a Few Times

Experimental Conditions

1. Minimizing "Visual" Prediction Error

- Minimizing the difference between
 - Visual Prediction (i.e., predicted gesture)
 - Observation (i.e., observed gesture)

VISUAL PREDICTION

2. Minimizing "Proprioceptive" Prediction Error

- Minimize the difference between
 - Prop. Prediction (i.e., predicted joint position values)
 - Observation (i.e., perceived position values)

Testing Environment

• A target sequence consisting of 4 concatenated patterns

PROP. PREDICTION ERROR

- With Visual PE Minimization
 - Successfully predicted visual images
 - − Generated corresponding Proprioceptive Prediction → Successful imitation
- Without Visual PE Minimization
 - − Did NOT predict Visual Images & Proprioceptive Signals → Unsuccessful imitation

- With Visual PE Minimization
 - Successfully predicted visual images
 - − Generated corresponding Proprioceptive Prediction → Successful imitation
- Without Visual PE Minimization
 - − Did NOT predict Visual Images & Proprioceptive Signals → Unsuccessful imitation

• Video

Result 2) Minimizing Proprioceptive Prediction Error

Result 2) Minimizing Proprioceptive Prediction Error

- With Prop.PE Minimization
 - Successfully minimized Prop.PE
 - Generated corresponding Visual Prediction (visual imaginary)
- Without Prop.PE Minimization
 - Not able to adapt to incoming Prop. Signal / generate corresponding visual imaginary

Result

2) Minimizing Proprioceptive Prediction Error

- With Prop.PE Minimization
 - Successfully minimized Prop.PE
 - Generated corresponding Visual Prediction (visual imaginary)
- Without Prop.PE Minimization
 - Not able to adapt to incoming Prop. Signal / generate corresponding visual imaginary

Result 2) Minimizing Proprioceptive Prediction Error

VIDEO

Result

Neural Activation while Minimizing Visual Prediction Error

- Trajectory of Neural Activation
 - Dashed Lines: During PE Minimization
 - Solid Line: During Training
- Overlapping Trajectories
 - <At higher level>
 - Inferring higher-level intention latent in observed patterns

Result

Neural Activation while Minimizing Visual Prediction Error

- **Trajectory of Neural Activation**
 - Dashed Lines: During PE Minimization
 - Solid Line: During Training
- Overlapping Trajectories
 - <At higher level>
 - Inferring higher-level intention latent in observed patterns
 - <At lower level>
 - Recalling the corresponding representations
 - Retrieval of missing sensorimotor signals

"Predictive Coding Account of MNS^{**} (Kilner et al., 2007)

Conclusion

- Predictive Visuo-Motor Deep Dynamic Neural Network (P-VMDNN)
 - Builds a **Predictive Internal Model** of the environment
 - From dynamic sensorimotor experience
 - Mentally Simulates possible outcome of an action
 - With a given intention through the top-down mechanism
 - Minimizes PE through updating internal states
 - Inferring higher-level intention latent in observed patterns
 - Recalling the corresponding visuo-proprioceptive representations acquired during training

Jungsik Hwang

Ahmadreza Ahmadi

Choi

Jun Tani

THANK YOU

- Acknowledgement
 - Korea's ICT R&D program of MSIP/IITP. [2016(R7117-16-0163), Intelligent Processor Architectures and Application Software for CNN-RNN]
 - SRS (Special Research Student) program at OIST