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“Deep Dynamic Neural Network Model” which can

1. Build a Predictive Internal Model of the world from 
sensorimotor experience 
• Predicting dynamic visuo-proprioceptive patterns

2. Minimize Prediction Error through updating 
internal states of the neurons
• Inferring intention of the perceived patterns
• Recalling visuo-proprioceptive representations

Overview
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Proposed Model

P-VMDNN
Predictive 
Visuo-Motor 
Deep 
Dynamic 
Neural Network
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• Predicts pixel-level dynamic 
visual images
– Implemented by P-

MSTRNN (Predictive-Multiple 
Spatio-Temporal Scales RNN)

– 4 Layers 
• Vision Input/Output
• Vision Fast 
• Vision Middle 
• Vision Slow

Proposed Neural Network Model

Predictive Visuo-Motor Deep Dynamic Neural Network

Visual Pathway
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• Predicts robot’s joint position 
values
– Implemented by MTRNN

(Multiple Timescales RNN)

– 4 Layers 
• Proprioception 

Input/Output
• Proprioception Fast
• Proprioception Middle
• Proprioception Slow

Proposed Neural Network Model

Predictive Visuo-Motor Deep Dynamic Neural Network

Proprioceptive Pathway
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• Between the highest level of 
each pathway

• Coupling of Vision & 
Proprioception

• Trained in a holistic manner
– End-to-End Training

Proposed Neural Network Model

Predictive Visuo-Motor Deep Dynamic Neural Network

Lateral Connection
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Proposed Neural Network Model

Predictive Visuo-Motor Deep Dynamic Neural Network

Smaller Time Constants,
Shorter Distance Connectivity

Larger Time Constants, 
Longer Distance Connectivity

Spatio-Temporal Hierarchy

“Emergence of 
Functional Hierarchy”
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Proposed Neural Network Model

Predictive Visuo-Motor Deep Dynamic Neural Network

Key Features
• Mental Simulation
• Prediction Error Minimization
• Processing of Spatio-Temporal 

Patterns*

• Coupling of Vision & 
Proprioception *

(*Hwang et al., ICDL-EPIROB 2016)
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• Task: Imitating another robot’s gestures
– Robotic Platform: iCub Simulator 
– Visuomotor Coordination, Observing the movements, Understanding the 

intention, Predicting the next movements

Experiment Setting

Demonstrator

Imitator
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• Dataset: Acquired From “tutoring” (kinesthetic teaching)

– 16 hand-waving gestures:
• Visual Images (64 x 48 grayscale)

• Joint Position Values (left & right elbows)

• Training: 40,000 epochs, BPTT, ADAM on Tensorflow
• After training:

– Connection weights & biases: same for all training data
– Initial states: different for each training data

• Network Settings:

Experiment Setting
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• Exp 1. Mental Simulation
– Imagining possible outcome of action
– Without external inputs, but with given intention

• Exp 2. Prediction Error Minimization
– Exp 2-1. Minimizing  Visual Prediction Error 
– Exp 2-2. Minimizing Proprioceptive Prediction Error

Experiment Structure
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• Ability to imagine probable result of our actions
• Important in social interaction
• Need to provide “a goal” – what to simulate

Mental Simulation of Action

Mental Simulation

• Proactively generating visuo-proprioceptive patterns
– Without external inputs, but with given intention states

• Anticipating
– its own action (i.e. Proprioceptive Prediction – joint position values) 
– & others’ action (i.e. Visual Prediction – gray scale images)

Implementation in Our Model
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Mental Simulation of Action

• Mental Simulation in the Proposed Model
1. Set the “Intention”

• Specified as the initial states

2. Generate Output
• Visual & Proprioceptive predictions

3. Feed Prediction Output into Input
• “Closed-loop Generation”

4. Iterate (2) – (3)
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• Different initial states for each training data
• Self-organized higher-level initial states 

– Reflecting the characteristics of the gestures

Result
Initial States obtained from Training

Vision Slow Proprioception 
Slow

Both arms moved simultaneouslyThe right arm moved firstThe left arm moved first

L
LR

R

B

B
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• With given ‘intention’, the model generated visuo-proprioceptive 
patterns without external inputs
– Coherent visual and proprioceptive predictions
 Vision and Proprioception were tightly coupled

Result
Mental Simulation of Action

Closed-loop generation of patterns
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• Core of “Predictive Coding”
• Account for MNS (Mirror Neuron System)

– Recognizing intention from observation by minimizing prediction error 
at the levels of a cortical hierarchy (Kilner et al., 2007)

Prediction Error (PE) Minimization

Prediction Error Minimization

• Recognizing intention of the perceived patterns by minimizing prediction error 
<HOW> Updating internal states of neurons at each level of the hierarchy

“Error Regression Scheme”

Implementation in Our Model
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• Error Regression Scheme (ERS)
– Implementation of PE Minimization 

(Tani, 2016)

At each time step
1. Generate Visuo-Prop. Predictions

• Top-Down Process

2. Compute Prediction Error
• Difference b/w Predicted & 

Observed Patterns

3. Backpropagate Prediction Error & 
Update Intention State
• Bottom-Up Process

4. Iterates a Few Times

Prediction Error (PE) Minimization

Environment
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Observation
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Observation
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1. Minimizing “Visual” Prediction Error
– Minimizing the difference between

• Visual Prediction (i.e., predicted gesture)
• Observation (i.e., observed gesture)

2. Minimizing “Proprioceptive” Prediction Error
– Minimize the difference between

• Prop. Prediction (i.e., predicted joint position values)
• Observation (i.e., perceived position values)

Testing Environment
• A target sequence consisting of 4 concatenated patterns

Experimental Conditions
VISUAL PREDICTION

ERROR

PROP. PREDICTION
ERROR
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Result
1) Minimizing Visual Prediction Error

Target  
Patterns

Vision Target Corresponding Proprioception Signal

Primitive 1 Primitive 2 Primitive 3 Primitive 4
Primitive 1 Primitive 2 Primitive 3 Primitive 4

• Vision target is given
• The model minimizes Visual PE

• Corresponding Prop. Signal
• (for imitation)
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• With Visual PE Minimization
– Successfully predicted visual images

– Generated corresponding Proprioceptive Prediction  Successful imitation
• Without Visual PE Minimization

– Did NOT predict Visual Images & Proprioceptive Signals  Unsuccessful imitation

Result
1) Minimizing Visual Prediction Error

Target  
Patterns

Vision Target Corresponding Proprioception Signal

Primitive 1 Primitive 2 Primitive 3 Primitive 4
Primitive 1 Primitive 2 Primitive 3 Primitive 4

With 
minimizing 

V. PE
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• Video

Result
1) Minimizing Visual Prediction Error
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Result
2) Minimizing Proprioceptive Prediction Error

Target  
Patterns

Corresponding Visual Signal Proprioception Target

Primitive 1 Primitive 2 Primitive 3 Primitive 4
Primitive 1 Primitive 2 Primitive 3 Primitive 4

• Corresponding Visual Image • Prop. target is given
• The model minimize PropPE
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• With Prop.PE Minimization
– Successfully minimized Prop.PE
– Generated corresponding Visual Prediction (visual imaginary)

• Without Prop.PE Minimization
– Not able to adapt to incoming Prop. Signal / generate corresponding visual imaginary

Result
2) Minimizing Proprioceptive Prediction Error

With 
minimizing 

Prop. PE

Target  
Patterns

Corresponding Visual Signal Proprioception Target

Primitive 1 Primitive 2 Primitive 3 Primitive 4
Primitive 1 Primitive 2 Primitive 3 Primitive 4
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• With Prop.PE Minimization
– Successfully minimized Prop.PE
– Generated corresponding Visual Prediction (visual imaginary)

• Without Prop.PE Minimization
– Not able to adapt to incoming Prop. Signal / generate corresponding visual imaginary

Result
2) Minimizing Proprioceptive Prediction Error

With 
minimizing 

Prop. PE

Without 
minimizing 

Prop. PE

Target  
Patterns

Proprioception Target

Primitive 1 Primitive 2 Primitive 3 Primitive 4
Primitive 1 Primitive 2 Primitive 3 Primitive 4

Corresponding Visual Signal
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• VIDEO

Result
2) Minimizing Proprioceptive Prediction Error
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Result
Neural Activation while Minimizing Visual Prediction Error

• Trajectory of Neural Activation
– Dashed Lines: During PE Minimization
– Solid Line: During Training

• Overlapping Trajectories
– <At higher level>

• Inferring higher-level intention 
latent in observed patterns
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• Trajectory of Neural Activation
– Dashed Lines: During PE Minimization
– Solid Line: During Training

• Overlapping Trajectories
– <At higher level>

• Inferring higher-level intention 
latent in observed patterns

– <At lower level>
• Recalling the corresponding 

representations
• Retrieval of missing 

sensorimotor signals

Result
Neural Activation while Minimizing Visual Prediction Error

“Predictive Coding 
Account of MNS” (Kilner et al., 2007)
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• Predictive Visuo-Motor Deep Dynamic Neural Network 
(P-VMDNN)
– Builds a Predictive Internal Model of the environment

• From dynamic sensorimotor experience

– Mentally Simulates possible outcome of an action
• With a given intention through the top-down mechanism

– Minimizes PE through updating internal states
• Inferring higher-level intention latent in observed patterns
• Recalling the corresponding visuo-proprioceptive representations 

acquired during training

Conclusion
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