**A Dynamic Neural Network Approach to Generating Robot's Novel Actions: A Simulation Experiment** 

<sup>1</sup>Korea Advanced Institute of Science and Technology, Korea <sup>2</sup>Okinawa Institute of Science and Technology, Japan Jungsik Hwang<sup>1,2</sup> and Jun Tani<sup>2</sup>

# **Research Objectives**

#### **GENERATING ROBOT'S NOVEL ACTIONS**

From experience of learning basic actions

#### **DYNAMIC NEURAL NETWORK APPROACH**

- Encoding actions into its own memory
- Non-linear Memory  $\rightarrow$  Source of Novelty

**KEY FINDINGS** 

## **GENERATION OF NOVEL/CREATIVE ACTIONS**

- By modulating & combining the learned actions
- Emerged from non-linear memory structure

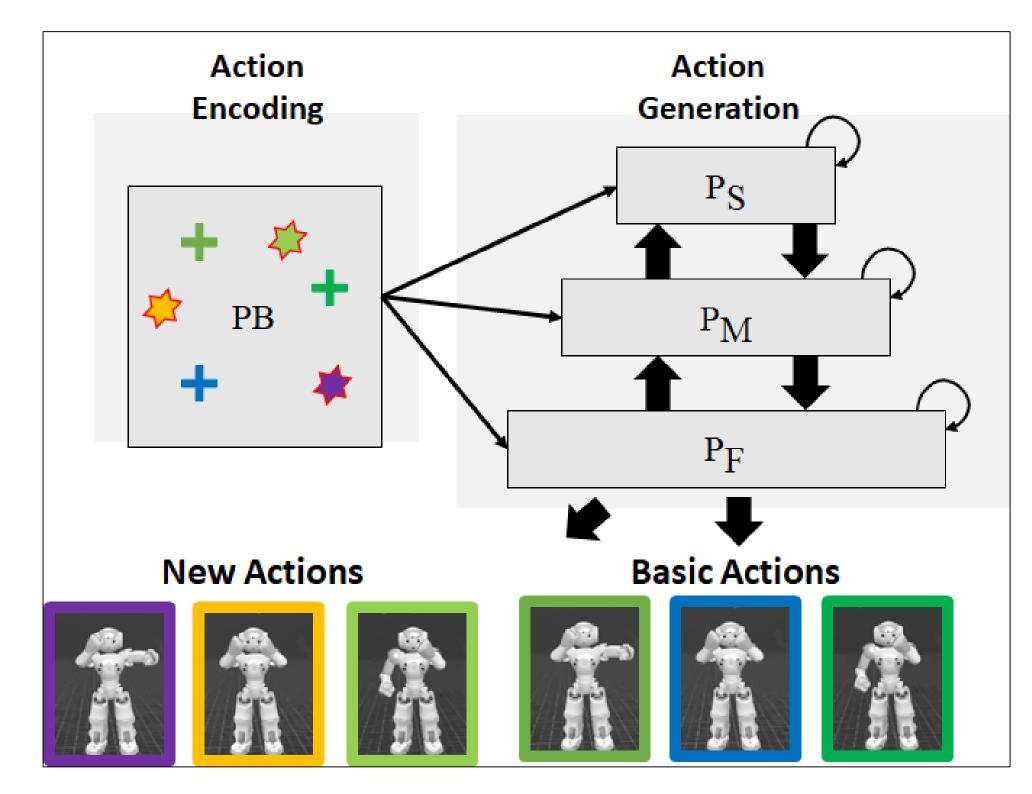
#### LEARNING METHOD INFLUENCED THE LEVEL OF CREATIVITY

By inducing self-organization of memory structure with different characteristics



ΚΔΙSΤ

# MULTIPLE TIMESCALES RNN WITH PARAMETRIC BIASES



**NETWORK ARCHITECTURE** 

#### **NETWORK ARCHITECTURE**

- [Action Generation Module] MTRNN for learning/generating robot's sequential behavior
- [Action Encoding Module] PB for mapping robot's high-dimensional action to low-dimensional space
- One pair of PB values represents a single action

#### **KEY FEATURES**

- Encoding actions in the continuous PB space without human intervention
- Generating robot's action without any external information, but only with given PB values (i.e. mental simulation)

# LEARNING/GENERATING ACTIONS

#### LEARNING ACTIONS DURING TRAINING

- [Dataset] Obtained from tutoring (LfD)
- [Supervised Training] Trained to generate 1-step prediction of joint angle values
- Optimize Weights/Biases and PB Values  $\left(\frac{\partial E}{\partial PB}\right)$
- \*N pairs of PB values for N data

## **OPEN/CLOSED-LOOP LEARNING**

INPUT(t) =  $\gamma \cdot OUTPUT(t-1) + (1 - \gamma) \cdot DATASET(t)$ 

- Open-Loop Training:  $\gamma = 0.0$
- Closed-Loop Training:  $\gamma = 1.0$

## **GENERATING ACTIONS DURING TESTING**

- Closed-loop generation with given PB values
- No external input is required

## EXPERIMENT SETTINGS

- **Robotic Platform** 
  - NAO (Simulation): 4 x 2 DoFs
  - 6 Boxing-like actions
- **Network Configuration** (PB/P<sub>S</sub>/P<sub>M</sub>/P<sub>F</sub>)
  - # of neurons : 2 / 10 / 20 / 40
  - Time constants: / 8 / 4 / 2

#### **TRAINING THE MODEL**

- 3 Training Conditions
  - Open-Loop / Closed-Loop / Half Closed-Loop ( $\gamma = 0.5$ )
- ADAM / Tensorflow / 100,000 epochs

#### **GENERATING ACTIONS**

- By linearly sampling 200 x 200 PB values
  - PB = Linspace(-1, 1, 200)

#### **MEASURING THE LEVEL OF CREATIVITY**

- Appropriateness
  - Neither too fast nor too slow
- Novelty
  - Dist (Generated Actions, Learned Actions)
- Diversity
  - *Dist* (Generated Actions, Generated Actions)

#### LEVEL OF CREATIVITY IN TERMS OF 3 MEASURES

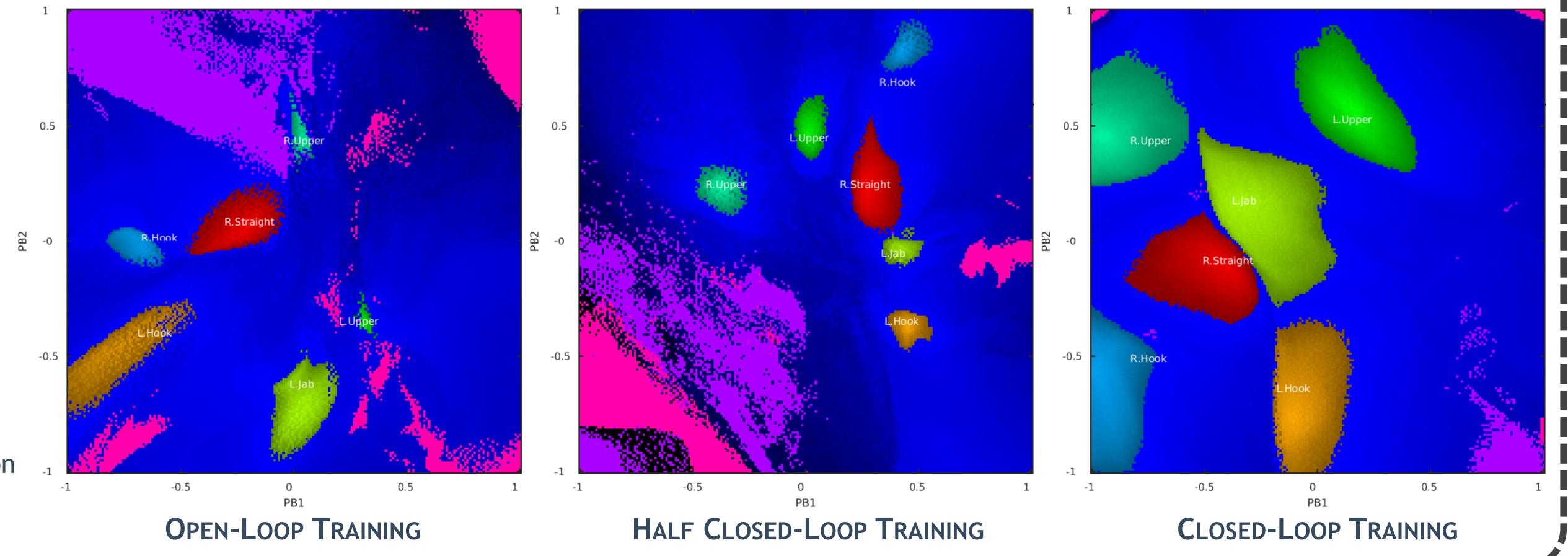
|                     | Closed-loop Ratio ( $\gamma$ ) during Training |       |       |       |
|---------------------|------------------------------------------------|-------|-------|-------|
|                     |                                                | 0.0   | 0.5   | 1.0   |
| Appropriateness (%) | Unlearned                                      | 72.21 | 75.26 | 57.95 |
|                     | Learned                                        | 11.23 | 7.58  | 40.02 |
|                     | Subtotal                                       | 83.44 | 82.84 | 97.97 |
| Novelty             |                                                | 26.02 | 31.71 | 18.53 |
| Diversity           |                                                | 43.12 | 48.03 | 35.96 |

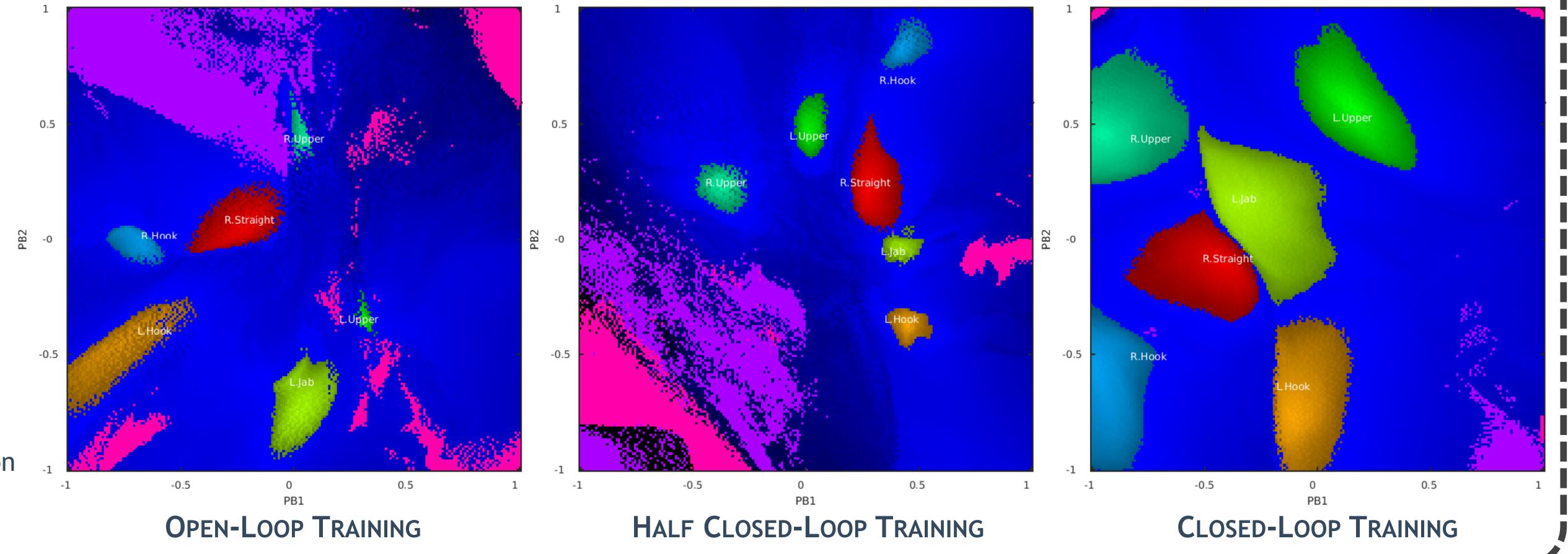
## NON-LINEAR MEMORY STRUCTURE SELF-ORGANIZED AT THE ACTION ENCODING MODULE

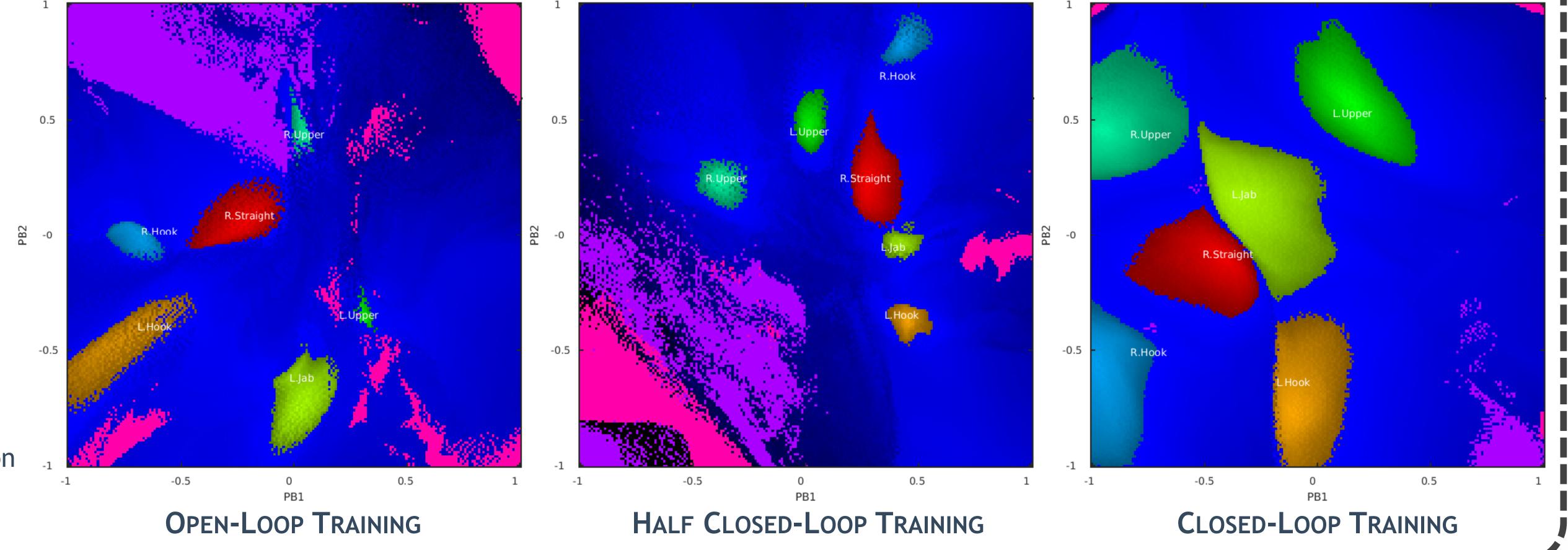
#### Visualization

- 200 x 200 PB values
- Each value encodes single action

Color Code







- 6 Learned actions
- Novel Actions
- Too Fast
- Not Moving

#### Results

- "Rugged" Landscape
- Small changes in PB → Huge changes in Action
- **Source of Novelty**

