The 15th International Conference on Ubiquitous Robots

June 28th, 2018

A Dynamic Neural Network Approach
to Generating Robot’s Novel Actions
: A Simulation Experiment

Jungsik Hwang'# and Jun Tani?

'Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea
°Okinawa Institute of Science and Technology (OIST), Japan

KAIST ,g% |
QOIST




A Dynamic Neural Network Approach to Generating Robot's Novel Actions : A Simulation Experiment

[ThP10]

How to Teach Actions
“Tutoring” “Learned Actions”

7/

Learning
From Demonstration




A Dynamic Neural Network Approach to Generating Robot's Novel Actions : A Simulation Experiment

[ThP10]

Research Questions
“Tutoring” “Learned Actions”

/7

Learning
From Demonstration

“Novel Actions”

7 -«

How can a robot generate novel
actions from learning basic actions?



A Dynamic Neural Network Approach to Generating Robot's Novel Actions : A Simulation Experiment

[ThP10]

Research Questions
“Tutoring” “Learned Actions”

/7

Learning
From Demonstration

“Novel Actions”

7 -«

How can a robot generate novel
actions from learning basic actions?

“Dynamic Neural Network Approach”
« Source of Novelty = Non-linear Memory Dynamics
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Dynamic Neural Network Approach

« Multiple Timescales RNN with Parametric Biases
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Action Encoding Module

« Maps robot’s actions into the low-dimensional space
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Action Generation Module

« Learns actions in a multiple timescales structure
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Generation of Action

« With given PB values in Action Encoding Modules
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Results — Generation of Novel Action

Six basic actions in training dataset

: Left Jab, Left Hook, Left Uppercut, Right Straight,
Right Hook, Right Uppercut
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Measuring the Level of Creativity

« Appropriateness
— Actions that “can be used”
« e.g., Maximum angular velocity < Threshold
* Novelty
— Actions “different from learned action”
« Distance(Learned Action, Generated Action)
« Diversity
— Actions “different each other”
* Distance(Generated Action, Generated Action)

Closed-loop Ratio (¥) during Training
0.0 0.5 1.0
Unlearned 72.21 75.26 57.95
Approg,%‘te“ess Learned 1123 758 4002
Subtotal 83.44 82.84 97.97
Novelty 26.02 31.71 18.53
Diversity 43.12 48.03 35.96
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Measuring the Level of Creativity

» Appropriateness
— Actions that “can be used”
« e.g., Maximum angular velocity < Threshold
* Novelty
— Actions “different from learned action”
« Distance(Learned Action, Generated Action)
« Diversity
— Actions “different each other”
* Distance(Generated Action, Generated Action)

Closed-loop Ratio (¥) during Training
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Unleamed 7221 } 7526 i, 5795 | —— The model's level of
Appropriateness : s
((;:) Learned 11.23 7.58 40.02 Creat|v|ty depends on
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Internal Structure in the Action Encoding Module
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« 200 x 200 points in 2D PB Space

« Each point encodes one action
e.g. (0.3, 0.2) > Left Jab
e.g., (0.1, 0.5) = Right Straight




A Dynamic Neural Network Approach to Generating Robot's Novel Actions : A Simulation Experiment

[ThP10]

Internal Structure in the Action Encoding Module

Action Action
Encoding Generatio
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« 200 x 200 points in 2D PB Space

« Each point encodes one action
e.g. (0.3, 0.2) > Left Jab
e.g., (0.1, 0.5) = Right Straight

« Self-organized during training
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Internal Structure in the Action Encoding Module

Actions learned during training

Combination of
Nove| «_RightStraight & Left Uppercut

Actions Different frop,

Actions that cannot be used
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Internal Structure in the Action Encoding Module

“Rugged” PB Space

: Small changes in the PB Values =» Abrupt changes in robot’s action
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Summary

» Generating Creative Robot Actions
— From the Dynamic Neural Network Perspective

* Neural Network Model (MTRNN-PB)

— Reproduces learned actions
— Generates novel actions
« Through modulating & combining those learned actions

— Self-organizes non-linear memory dynamics
« Source of novel actions
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